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Metal Hydrogen System

M. HOWARD LEE

DEPARTMENT OF PHYSICS
THE UNIVERSITY OF GEORGIA
ATHENS, GEORGIA 30602

ABSTRACT

Dynamical problems facing hydrogen diffusion in metal hydrogen
systems at low temperature are surveyed. A microscopic model
is constructed based on the assumption that the functional units
are clusters of Fermi or Bose particles, collectively referred
to as spin clusters. Critical behavior of metal hydrogen systems
provides a key approximation which makes our model soluble.
The time-dependent autocorrelation functions are obtained by
solving the Heisenberg equation of motion using a new mathematical
technique called the recurrence relations. The dynamical solutions
shed light on the reversed isotope effect in diffusion. The nature
of 1interstitial spin clusters is examined and compared with
atomic and nuclear spin clusters. The spin clusters show striking
resemblancg to the superfluid component in the two-fluid theory
of liquid 'He.

I. INTRODUCTION

The hydrogen isotopes absorbed in certain open metals are
known to have some unusual transport characteristics.1 If a par-
ticular transport property e.g. mass diffusion is properly under-
stood, one might be able to utilize it to achieve a high degree
of hydrogen separation.2 Understanding hydrogen diffusion turns
out to be no simple task, involving several areas of physics and

chemistry. For example, the atomic ratio of hydrogen to the host
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metal is typically of order unity.3

That 1is, the density of the
interstitial hydrogen is rather high. Also, an interstitial hydro-
gen or deuterium atom loses much of its electron cloud.u Hence,
we have a dense gas of the interstitial hydrogen or deuterium
which must best be viewed as an ensemble of effectively fermions
or bosons.

In addition, the interstitial hydrogen exhibits mean-field-

like second order transition.3

This kind of critical behavior
indicates that there exist cooperative forces which are 1long-
ranged but approximately constant. The diffusion process is
likely to be governed by the same cooperative forces in some
subtle way. Thus, the interaction of the interstitial hydrogen
cannot be treated as a weak perturbation. To complicate the
matter further, the diffusion of the interstitial hydrogen and
deuterium shows a reversed isotope mass dependence.1 A similar
reversed isotope effect also exists in the superconducting tem-
peratures of metals containing hydrogen and deuterium, which
otherwise are nonsuperconductors in their pure metallic for'm.5
Perhaps, most relevant is the existence of spinodals and relatively
large regions of metastability in the phase space of density

and temper‘ature.6'7

They strongly suggest that below the critical
temperature Tc’ the interstitial hydrogen exists in clusters.

These physical facts provide clues for constructing a micro-
scopic model (which we shall denote by H). A microscopic model
is a first item in developing a theory of interstitial-hydrogen
diffusion. Such a model must be a dynamical one, incorporating
spin statistics and cooperative forces. There are a few models
in the 1literature. However, most of them ignore much of the
physical realities. For example, some models can treat only
the dilute density limit (i.e., single-atom hopping) or the ideal
limit (i.e., no cooperative t‘or‘ces).s’9 Others can treat only
the high-temperature 1limit (classical region).10 Virtually all
existing models are non-dynamical or non-microscopic. One cannot
use them to calculate the transport coefficients starting from

first principles.
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Diffusion in a homogeneous many-body system is characterized
by the self-diffusion constant. This constant can be calculated
from certain time-dependent autocorrelation functions e.g. the
velocity autocorrelation function by a well-established relation-
ship.11 Given a model or H, the autocorrelation functions are
obtained by solving the Heisenberg equation of motion. For
N - @ (where N is the number of particles or some other basic
aggregates, i.e., functional units), solving the Heisenberg
equation requires a special mathematical technique.12 Thus
studying diffusion from first principles requires a dynamical
microscopic model H and the autocorrelation functions.

In Sec. II, we describe a dynamical model for the interstitial
hydrogen and deuterium based on quantum statistical theory.
There are two essential physical ideas characterizing our model:
(1) For temperature below the transition temperature Tc, the
functional units are clusters, not single particles. These
clusters are composed of single particles and self-stabilized by
spin statistics. The sizes and numbers of clusters also depend
on temperature T and forces. For T > Tc’ these clusters break down
and there are only single particles. (2) Forces between clusters
are long-ranged. Short-range forces are "integrated-out" in
forming clusters. To prevent mutual penetration by these clusters,
a hard-core-like property is built into the kinematics of the
model.

The static ecritical behavior is determined by the cluster-
cluster interaction. Our model exhibits first and second order
transitions. There is a tricritical point. It shows that the
critical temperature, for example, hardly depends on the cluster
sizes or masses, i.e. isotope independent. The dynamical behavior,
however, arises from the motions of clusters. The sizes and
masses should therefore enter into the structure of the transport
coefficients. In atomic and nuclear physics one finds clusters
which are stabilized by spin statistices. Available evidence
on these clusters shows that the Bose clusters are stabilized by

very few Bose particles, whereas the Fermi clusters by larger
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numbers of Fermi particles. If our interstitial clusters have
similar properties, our model has a basis for explaining the
reversed isotope eff‘ect.1 Our model actually makes a prediction
on the relative diffusion coefficients.

In Sec. III, we describe a new mathematical technique of
solving the Heisenberg equation of motion for many-body systems.
The original idea was given by H. Mori in 1965 who showed that
the Heisenberg equation is equivalent to a generalized version
of the quantum Langevin equation.12 The Langevin equation of
course is well known for its connection to Brownian motion and
is widely applied today for stochastic processes.11 This
unexpected formal connection provided Mori with an insight into
the Heisenberg equation. But because of certain technical diffi-
culties (stemming from continued fractions which have to do with
the mathematical theory of the problem of moments), he was unable
to obtain complete formal solutions for the Heisenberg equation.

Very recently the author was able to obtain complete mathe-
matical solutions for the Heisenberg equation using Hilbert space

theory.13

It was made possible by the realization that Mori's
approach is couched in the Gram-Schmidt orthogonalization process.
Although valid, this process complicates, not simplifies, the
Heisenberg equation. A new orthogonalization process (named
the orthogonalization by recurrence relations) expresses the
Heisenberg equation into a set of time-dependent functions.
These functions are all linked by an exact recurrence r'ela'cion.“4
This method was first applied to study the dynamics of electrons
in normal metals in two and three dimensions, for which there are
well established (and relatively simple) models.15 This paper
describes some of our initial work on the cluster model by the

method of recurrence relations.

II. PHYSICAL MODEL

A. Physical Information

We will briefly summarize main experimental facts which

are basic ingredients for our diffusion model. The experimental
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evidence is obtained largely from the Pd-H system. (1) Neutron
scattering. The scattering experiments show that the absorbed
hydrogen atoms occupy the interstitial sites of the host lattice.
These sites form an octahedral sublattice of the fcc structure.16
(2) a-B transition. The absorbed hydrogen undergoes a gas-liquid-
like phase transition. There 1is a c¢ritical point which is
completely mean-field—like.3 From these results, we infer that
there are cooperative forces and that these forces are long-ranged
and roughly constant. Such forces can only arise from the large
compressibility of the lattice with respect to interstitial
occupation. Consequently the sublattice of hydrogen must be

17

a nonrigid one. (3) Spinodals and metastability. Recent

measurements of spinodals show that there are large areas of

metastability bounded by the solubility and coherent spinodal

cur'ves.é’7 The curves do not even meet at TC and are separated
at all temperature values. In these areas one knows that
nucleation and growth take place via cluster formation. Hence

there must be some types of atomic clusters. (4) Compton

Erofiles.18’2o
the interstitial hydrogen is very nearly proton-like bereft of

Experimental profiles strongly suggest that

the electron cloud. Similarly the interstitial deuterium is
deuteron-~like. The interstitials carry at best a very small
fraction of the electron charge and they are effectively bare

nucleons, 1i.e., fermions or bosons. (5) Reversed isotope

effect.1’21’22 The existence of a reversed isotope effect indi-
cates that the fundamental dynamical processes of hydrogen
diffusion have quantum mechanical origin. Classical rate theories
are not applicable in their usual form.

We assume that below Tc the functional units are clusters.
These clusters are composed of protons (Fermi clusters) or
deuterons (Bose clusters). Above Tc’ the clusters break up into
the constituent single particles. The mechanisms of cluster
formation, the cluster sizes, stability and temperature dependence
(referred to as single-cluster properties) will be discussed
in Sec. VI. Single-cluster properties depend on spin statistics

explicitly.
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For T < Tc our system is an ensemble of interacting clusters
of Fermi or Bose type. The forces between clusters are assumed
to be long-range but constant and independent of spin statistics.
Then the ensembles of both the Fermi and Bose clusters have the
same many-body properties e.g. phase transition. Any subtle
difference e.g. reversed isotope effect must ultimately arise from

single-cluster properties.

B. Partition Function and Transformation

It is convenient and now customary to describe many-body

systems like ours in the 1language of second quantiza’cion.23

We use pseudospin-} operators, si+ and si' defined as follows:
* X y 1

S, = 8 + i s

E N z u
i i i and si si =z % si , where si , H B8 X,¥,2,

are the three Pauli matrices at lattice site i. These operators
4

act on clusters and they satisfy spin-} algebra.z That is,
at the same site these operators anticommute and at different
sites they commute. The spin algebra prevents clusters from
penetrating each other. Qur Hamiltonian H, which defines our

model, is given by25

- IF *g 2
H E (xu) 8; 8, + %Aa(Axa) ,

aiij J
2 2
Eij(xu) = h"™/2Md" - Uij(xu)
ax = Xy~ X, (1)

where h is the Planck constant, M is the mass of a cluster, d the
average cluster spacing, X, and ia are the host metal's instan-
taneous and equilibrium coordinates, respectively; Uij is the
interstitial occupation energy due to transition between a pair
of neighboring sites i and j; A is the lattice spring constant.

The model contains only the pair-wise interaction and it
limits the cluster transition to near-neighbor pairs only. As
a many-body model, it has a relatively simple form of energy.
One can obtain all the equilibrium properties form the partition
function Z = Tr exp(-H/kT), where k is the Boltzmann constant
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and Tr means a diagonal sum. A direct evaluation of the partition
function is difficult because of the nonrigidness of the sublattice.
By applying a unitary transformation Z, under which Z is invariant,
one can remove the nonrigidness at the expense of having a more
complicated form of the interaction. The unitary-transformed
model fi = FHI L may contain multi-body terms, but they may be

more easily approximated. The ¢transformation itself is rather

technical and will not be given here.25 Our unitary-transformed
model has the following form
01 1 o -
H =9Hg ' - _gijij 8y 8,
1 a + - + -
-5 X ZU U (s, s, )(s s ),
2A o iJ mn ij mn i™] mn
o - a
Eij = Eij(xa)’ Uij = d/dxaU1j ) (2)

The unitary transformation has removed the rigidness but introduces

a biquadratic coupling.

C. Constant-coupling Approximation

It is very well established that the critical behavior
of PdH is mean-f‘ield-like.3 Hence for (2) we make the following

mean-field approximation:

a a
Eij = Eéao and Uij = Uéao’

where E and U are now constants and 6 is the Kronecker delta.
Then

~  ~MF + + -
H-H0" = = Eiﬁsi sj - L i% 2(5i J o °n ) (3)

where L = U2/2A . The mean-field model consists of quadratic
and biquadratic spin exchange terms and this model is soluble.
From the recent work of Lee and Banerjee,26 we see that this
particular form is a special case of the biquadratic general-

ization of the spin van der Waals model of Dekeyser and Lee
27
H

DL’ given below:
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2 2
HDL = = (J S =2 Sz ) - (QS

4 2.2 4
- 208 sz + N sz ), (4)

where X = J - Jz, n = Q - Qz; J, Jz and Q, Qz are, respectively,
the quadratic and biquadratic exchange constants. The total

pseudospin operator Su is given by

N
Su = 121 3, W = X, ¥, 0rz

where N is the total number of pseudospins (i.e., the sublattice

points). Dekeyser and Lee27 studied this model when Q m Qz = 0.

Kim extended their work by studying the full model.28 The mean-
field model (3) represents the case in which E = J, L = Q,
JZ = QZ = 0. Hence we understand the static properties of (3)
completely. For Q<Qo = 2J/3, the model has a second order
transition defined by Tc = J/2k independently of Q. There is
dipolar ordering but no quadrupolar ordering below Tc. Above
Tc there is no long-range order at all. At Q = Qo’ T = Tc’
the second order ceases and the first order begins. The point,
QO and Tc‘ is a tricritical point. The boundiry of the first
order region is described by TC(Q) = TC(Q/Qp)E, QEQO. Hence
for Q<Q°, the system behaves essentially like the pure spin van
der Waals with little or no influence by the biquadratic exchange.
To obtain nonequilibrium properties, we use the method of re-

currence relations described in Sec. III.

III. THE METHOD OF RECURRENCE RELATIONS

We shall briefly describe the method of recurrence relations

(RRs),13 mainly to introduce the notation of nonequilibrium

statistical mechanics needed for calculating various time-
dependent autocorrelation functions e.g. the velocity autocor-
relation function. Consider a dynamical variable of interest,
say A, which may be the velocity of a cluster or the cluster-
density fluctuations. The time evolution is denoted by A(t),

formally given by the Heisenberg representation
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A(t) = exp(iHt) A exp(-iHt),

which satisfies the Heisenberg equation of motion
R(t) = 1[H, A(£)] = i{HA(L) - A(t)H}

where the dot denotes a derivative with respect to time. The
physical information contained in A(t) is extracted by forming
an autocorrelation function (A(t), A), where the inner product

usually means the Kubo scalar product.13

Sometimes it can be
approximated by a cannonical ensemble average
<A(t)A> = Tr{A(t) A exp(-H/kT)}/Z. The method of RRs solves
the Heisenberg equation formally. Given A(t)}, there is a second
independent dynamical quantity called the random force F(t),
responsible for the memory of an externally induced perturbation.
The method of RRs gives the following solutions for A(t) and

F(t):

Alt) = nzoan(t)f“ and  F(t) = n§1bn(t)fn (5)

where {fn} is a set of orthogonalized basis vectors which span
the Hilbert space of A; {aJ' and {bn} are sets of real time-
dependent functions. In linear response theory, aO and b1 are
called the relaxation and memory functions, respectively.23
The above RR (referred to as RR-I) represents an orthogonaliza-
tion process; and it is superior to the wusual Gram-Schmidt
process, if Hilbert space is realized.1q

There is a second RR (referred to as RR-II) which is
satisfied by {an}

8 (£) = -a_(t) +a__ (t), n>0 (6)

n+1 an+1
where a_, = 0 and én = da /dt. Also {bn} satisfies the same
RR starting with n = 1. The RR-II is characterized by A's, which

are functions of static properties only. If A's are Kknown
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(exactly calculable for our mean-field model HMF), one may be

able to obtain an(t) and bn(t) and hence A(t) and F(t).

13,14

For detail, we refer to the original papers. This

method has been successfully applied to electron transport pro-
15

cesses in normal metals.

IV. AUTOCORRELATION FUNCTIONS

Following the method of RRs we shall calculate A's for

Hp, confining ourselves to Q<Q_ and T<T . Recall that s
a special case of the biquadratic spin van der Waals. Our cal-

culations show that 's follow a very simple form:

A = na
n

where A = 2XAKT/N. For this set of A's, the RR-II is uniquely
satisfied by

a (t) = (a3 01y exp(-3at?) (7

for all n>0. We do not have a closed expression for bn(t) but

3

only a series form in powers of At (for simplicity A is suppressed

in the following):

b (t) = 1 - 265721 + 10tt /- 748761 4 706t8/81
- 816269101 & . . .

by(t) = t - 5¢3/31 + 3782/51 - 35367 /71 + w081t%/91 - . .

by(t) = £2/21 - oth/ur 4 93t8/60 - 1125¢8/81 4 .

b, (t) = £3/31 - we/se 4 1938T/7r o L L (8)
and so on. Now a and bn are exactly related by convolution

t
a (t) = Jodt' a (t') b_(t=t'). 9)

Hence anyone of {bn} is effectively known to any order of a series

expansion, e.g.
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2 t 2
t exp(-it”) = J dt' exp(-3t'“) b1(t-t'). (10)
o

Observe that b, (t) # a,(t) = (1 - £2) exp(-3t?) = 1 - 3t%/2
+ 15tu/4! - 105t6/6! + 9N5t8/8! « .. . . For t small, clearly
b1(t) > 51(t). Now the cluster mobility p is given by u={ dt b1(t).
Since dt 51(t) = 0, we conclude that p > 0. The memory‘%Unction
b1(t) thus directly yields a finite value for the mobility as
a function of temperature contained in A.

The self-diffusion constant Ds can be deduced from the
relaxation function ao(t) as Ds = uii, where o 1is a constant
depending only a kinematical factors. The diffusion constant
contains the cluster mass M in A through E (see our original
expression for the model). For the region Q<<Q°, E = h2/2Md2
and the self-diffusion is expected to decrease with the growth
of the cluster mass. To evaluate Ds absolutely, we need to know
the kinematical factors, most of which are still unavailable
from experiment. We can however use our result to obtain an
expression which gives the relative size of proton and deuteron
clusters in terms of some measurable gquantities.

Our formal result applies equally to proton and deuteron
clusters. The essential difference between the two types of
clusters is assumed to arise from single-cluster properties.
For example, the proton and deuteron clusters should not have
the same size at the same temperature since the physical mechanisms
of their formation depend on statistics explicitly. That 1is,
at a given temperature, the proton and deuteron clusters differ
considerably in size and hence in mass. Now the experimental

diffusion data are usually fitted to the Arrhenius f‘orm1

Ds = Do exp (-W/kt) (11)
-3

diffusing unit which may be a single particle or cluster) and

W 1s the activation energy. For 200K < T < 500k, VOlkl et al21

where Do is a constant proportional to mo (mo the mass of the

have fitted the data from the diffusion of the hydrogen isotopes
p and 4 in Pd by



13:31 25 January 2011

Downl oaded At:

1286 LEE

Ds(p)/Ds(d) = J2 exp (=Wp 4 /KT) (12)

where wpd = wp - Wd and wpd/wp ~ 0.1. Note that T = 566k for
PdH.

vle introduce a mass number z, which is the average number
of single particles in a cluster defined by z @ M/m, where m
is the single-particle mass and M the cluster mass. Then using

our results for Ds and combining it with the Arrhenius form,

we get

8 = zd/zp = exp (-Wpd/kT). (13)
For high temperature, M—-m and z—1. Hence 8 -1, i.e., there are
no clusters, only single particles. For low temperature, 8 < 1,
i.e., the proton clusters are on the average larger than the
deuteron clusters. This can account for the reversed isotope
effect in diffusion. The exponential factor approximately in-

dicates the degree of involvement by clusters in the diffusion
process. The above result may be regarded as a semi-phenomeno-

logical rate-theory expression for clusters.

V. SINGLE-CLUSTER AUTOCORRELATION FUNCTION

1t is possible to obtain the autocorrelation function for

a single cluster initially localized at site o. There are three
diagonal elements Guu(t) = <sg(t) sg>, u= X, ¥y, z. The six non-
diagonal elements vanish for our mean-field model. The rotational
symmetry of our model also makes Gxx = ny. Hence there are

only two non-zero elements of the autocorrelation function.
Gxx is more interesting than Gzz' Hence we discuss the former
only.

We are principally concerned with the long-time behavior
(t=~=), which can be most readily compared with experiment. To
solve this problem we first divide our system into two subsystems,
one small and one large. The small subsystem contains only the

tagged cluster and the large subsystem contains the rest. A
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great deal of simplification arises if we can regard the large

subsystem as a thermal bath or reservoir for the tagged cluster.

Using our previous results, we find that30
X X
Gxx(t) o <so (t) s, >

! Bu® 2 2 2

=}I du e~ (1 - 2 Bu™)(1 - u)/(1 - au’) (1)
o
1 2

+ & J du e-Br‘ (1 -2 Br‘2) (1 + bu(1 -auz)-%]z,
-1

where B = (ath/N)z, a2 = N/(2-J/kT), b2 = 3(2-J/kT), a = 1-b2,

r=u- (1 - uue)%/b. The above integrals can be evaluated analy-
tically for t-—e

G, (t) B &vq'bz g=3/2 ibu 8" & const. t-z, (15)
where the first term can be dropped compared with the second for
t-= The autocorrelation function shows a long-time tail, rather
than an exponential decay (Ornstein-Zernicke). The existence
of long time-tails, first suggested by computer simulations using
Brownian-like systems, has been a source of controversy x”ecently.u0
Long-time tails indicate that the time correlations persist for
a long period of time and the dispersal of particles or clusters
(i.e. diffusion) takes place very slowly. We can show that the
DL® Defining R = Jz/J,

we find for R > 2, Gxx(t) = exp(—gtz) for some g>0. But for

long-time tails do not always exist in H

0<R<2 (but R # 1), G, (t) = const. t73. For R = 1, G (t) is
also Gaussian. Our first result corresponds to R = O. This
rather remarkable behavior indicates that the motion of a cluster
depends sensitively on the symmetry of competing interactions.
Since the transport coefficients are obtained by integrating
the autocorrelation function over all times, the presence of

long-time tails can influence the magnitude of these coefficients
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enormously. Some of these numerical details will be published
30

elsewhere.

VI. NATURE OF SPIN CLUSTERS

Cur work is premised on the following two basic assumptions:
(1) For low temperature, the functional units are Fermi or Bose
clusters (hence referred to as spin clusters collectively).
Nucleation and growth of spin clusters are determined principally
by spin statistics and short-range forces. (2) Given the spin
clusters, their numbers and multiplication are determined prin-
cipally by temperature and long-range forces. The applicability
of our work to hydrogen metal systems rests on the validity of
these assumptions. We shall see whether these assumptions and
their implications are physically reasonable. We shall also
see whether there are some physical evidence for them.

Low-temperature measurements of the diffusion of the hydrogen
isotopes p and d in Pd show reversed isotope behavior. It was
our conclusion that transport behavior can appear anomalous because
the functional units are clusters and not single particles.
Furthermore, the deuteron clusters are "hard and small" containing
few deuterons, whereas the proton clusters are '"soft and large"
containing many protons. This conclusion may be compared with
the behavior of spin clusters found in atoms and nuclei.

Atomic spin clusters are found in 1liquids 3He and qu at
very low temperatures. The electron wave functions for 3He and
uHe are almost identical.31 The pronounced difference in the
low-temperature behavior between the two liquids is generally

3He

attributed to the difference in spin statistics obeyed by
and uHe. When mixed, the two liquids show some very remarkable
miscibility properties such as phase separation and tricritical
point.32 Inside the miscibility gap, one finds metastable and

spinodal regions.33

In these regions there are indeed two types
of clusters, one metastabilized by Fermi particles 3He and the
other by Bose particles uHe. Hence they are spin clusters.

The nucleation and growth rates of these spin clusters are found
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to be very different. Hoffer et a13u

3

found that when the mix-
tures are quenched, ~“He-rich clusters show growth, whereas uHe-
rich clusters do not appear to grow. The behavior of these atomic
spin clusters seem to be consistent with our first assumption
and its implications.

It is generally held that the nuclei are made up of certain
discrete functional units resulting in some definite structure.35
Clusters and spin statistics play an important role in understand-
ing the formation and stability of nuclear matter. Nuclear
clusters most frequently discussed are Bose clusters of the a-
particle model and Fermi clusters of the independent-pair model.
Hence these nuclear clusters are also spin clusters. The ao-

particle model can account for certain light nuclides e.g. C12

and 016, but not heavier ones.36

The independent-pair model,
however, can describe much of the physics of nuclear matter very
adequately. That 1s, heavier nuclides are not composed of Bose
clusters, but composed of Fermi clusters. Apparently even the
nuclear Bose clusters do not enjoy growth and they do not there-
fore contribute much to building of heavier nuclei. The behavior
of nuclear spin clusters to be consistent with our first
assumption.

The different clustering behavior between Fermi and Bose
particles is not unreasonable. Because of the Pauli exclusion
principle, the Fermi particles are prevented from close approach,
but the Bose particles are not. As a result, a small number
of Bose particles may readily form a droplet-like structure and
quickly saturate e.g. the a -particle. Owing to the exclusion
Fermi particles enjoy greater correlation and find more difficult
to saturate. Hence Fermi clusters involve 1larger numbers and
they are more elastic. That is, the Fermi clusters are generally
bigger and have greater degrees of freedom than the Bose clusters.

Now turning to the second assumption, we note that it does
not involve spin statistics. It really need not be an assumption.
It could be proved within the framework of our mean-field model.

In our work we have simply taken it as an assumption as it appears
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to be well justified by the behavior of ordinary clusters. The
BCS theory of superconductivity, for example, assumes that Cooper
pairs multiply as the temperature is lowered below the supercon-
ducting transition temperature.37 The modern theory of 1liquid
uHe assumes that below the lambda temperature, a fraction of
the 1liquid is 1in the superfluid state whose density increases

38

with lowering of the temperature. The population growth rates
of these quasiparticles are difficult to calculate from first
principles. (Hence they have never been exactly calculated.)
For our model this calculation appears feasible because the mean-
field approximation is applicable ab initio.

Our calculation of the cluster density as a function of
the temperature is based on the following idea: Below the tran-
sition temperature TC, spin clusters are assumed to be randomly
distributed in a sea of single particles. The total number-

density p, which is a constant, is a sum

P =P 4 psp (16)

where »p is the cluster density and pSp the single-particle

density.Cl As T-0, more and more clusters appear reducing the
single-particle population. The ground state contains clusters
only. As T*T&, more and more clusters break down, increasing
the population of single particles. Above Tc there are no spin
clusters. This picture is very similar to the two-fluid concept

of liquid uHe due to Tisza,38 according to which the helium liquid
below the lambda temperature TA is composed of 2 components,
superfluid and normal fluid. The two fluids interpenetrate,
one serving as the reservoir for the other. The superfluid has
no entropy. At T = 0, the liquid contains only the superfluid
component and above TA’ only the normal fluid component. The
superfluid density 3;% just below the TA has been calculated by

a scaling argument,

2/3
p. - (1 - 1/T 7. a7
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Using this idea we obtain the cluster density near Tc

Pey/P ~ (1 = TIT) Tg¢T,

=0 T > Tc (18)
The cluster density has an exponent 1 because our model is a
mean-field system. Our calculation appears to be extendable
to T = 0 by a method due to Dekeyser and Lee.27 This work is
in progress.

Finally the analogy between 1liquid uHe and our model is
strengthened by the following fact: The lambda transition in
liquid uHe is second order. The transition temperature TA shows
a very weak dependence on pressure P, so that it can be effectively

38

represented as

TA(P) = TA for P < Po Q)]

where TA g 2.2 k Po & 25 atm.

For P > Po, the transition is first order and the transition
temperature becomes noticeably pressure-dependent. This behavior
of TX is strikingly similar to the behavior of the transition

temperature Tc of our model [see sec. II].
TC(Q) = Tc for Q < QO

= Tc(QIQO)% Q> QO' (20)
For Q < Qp, the transition is second order; for Q > Qo it 1is
first order. The main difference between the two systems is
in the nature of second order. Our model has mean-field critical
exponents, whereas 1liquid uHe has non-mean-field c¢ritical
exponents. We observe that the correspondence between the two
systems is made by the pressure P and the biquadratic interaction
Q.
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