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Separation by Diffusion of Hydrogen Clusters in a 
Metal Hydrogen System 

M. HOWARD LEE 
DEPARTMENT OF PHYSICS 
THE UNIVERSITY OF GEORGIA 
ATHENS, GEORGIA 30602 

ABSTRACT 

Dynamical problems f a c i n g  hydrogen d i f f u s i o n  i n  metal hydrogen 
s y s t e m s  at  low t e m p e r a t u r e  are s u r v e y e d .  A m i c r o s c o p i c  model 
i s  c o n s t r u c t e d  based on t h e  a s sumpt ion  t h a t  t h e  f u n c t i o n a l  u n i t s  
are c l u s t e r s  of Fermi o r  Bose p a r t i c l e s ,  c o l l e c t i v e l y  r e f e r r e d  
t o  as s p i n  c l u s t e r s .  C r i t i c a l  b e h a v i o r  o f  metal hydrogen s y s t e m s  
p r o v i d e s  a key approx ima t ion  which makes o u r  model s o l u b l e .  
The t ime-dependent  a u t o c o r r e l a t i o n  f u n c t i o n s  are o b t a i n e d  by 
s o l v i n g  t h e  He i senbe rg  e q u a t i o n  of motion u s i n g  a new ma themat i ca l  
t e c h n i q u e  c a l l e d  t h e  r e c u r r e n c e  r e l a t i o n s .  The dynamical  s o l u t i o n s  
s h e d  l i g h t  on t h e  r e v e r s e d  i s o t o p e  e f fec t  i n  d i f f u s i o n .  The n a t u r e  
o f  i n t e r s t i t i a l  s p i n  c l u s t e r s  is examined and compared w i t h  
a t o m i c  and n u c l e a r  s p i n  c l u s t e r s .  The s p i n  c l u s t e r s  show s t r i k i n g  
r e semblance  t o  t h e  s u p e r f l u i d  component i n  t h e  t w o - f l u i d  t h e o r y  
of l i q u i d  He. 

I. I N T R O D U C T I O N  

The hydrogen i s o t o p e s  abso rbed  i n  c e r t a i n  open metals are  

known t o  have  some u n u s u a l  t r a n s p o r t  c h a r a c t e r i s t i c s . ’  I f  a par-  

t i c u l a r  t r a n s p o r t  p r o p e r t y  e -g .  mass d i f f u s i o n  i s  p r o p e r l y  unde r -  

s t o o d ,  one might  be  a b l e  t o  u t i l i z e  it t o  a c h i e v e  a h i g h  d e g r e e  

o f  hydrogen s e p a r a t i o n . 2  Under s t and ing  hydrogen d i f f u s i o n  t u r n s  

o u t  t o  be no s i m p l e  t a s k ,  i n v o l v i n g  s e v e r a l  areas of p h y s i c s  and 

c h e m i s t r y .  For  example,  t h e  atomic r a t i o  of hydrogen t o  t h e  h o s t  
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1276 LEE 

metal is t y p i c a l l y  o f  o r d e r  u n i t y . 3  T h a t  is ,  t h e  d e n s i t y  of t h e  

i n t e r s t i t i a l  hydrogen is r a t h e r  h i g h .  A l s o ,  an i n t e r s t i t i a l  hydro- 

gen o r  d e u t e r i u m  atom l o s e s  much of its e l e c t r o n  c l o u d . 4  

we have a d e n s e  gas of t h e  i n t e r s t i t i a l  hydrogen or deu te r ium 

which must b e s t  be viewed as an  ensemble o f  e f f e c t i v e l y  f e rmions  

or bosons . 

Hence, 

I n  a d d i t i o n ,  t h e  i n t e r s t i t i a l  hydrogen e x h i b i t s  mean-f ie ld-  

l i k e  second o r d e r  t r a n ~ i t i o n . ~  Th i s  k ind  of c r i t i c a l  behav io r  

i n d i c a t e s  t h a t  t h e r e  e x i s t  c o o p e r a t i v e  forces which are long-  

ranged b u t  a p p r o x i m a t e l y  c o n s t a n t .  The d i f f u s i o n  p r o c e s s  is 

l i k e l y  t o  be gove rned  by t h e  same c o o p e r a t i v e  f o r c e s  i n  some 

s u b t l e  way. Thus,  t h e  i n t e r a c t i o n  of t h e  i n t e r s t i t i a l  hydrogen 

c a n n o t  be t r e a t e d  as a weak p e r t u r b a t i o n .  To c o m p l i c a t e  t h e  

matter f u r t h e r ,  t h e  d i f f u s i o n  o f  t h e  i n t e r s t i t i a l  hydrogen and 

deu te r ium shows a r e v e r s e d  i s o t o p e  mass dependence.’  A similar 

r e v e r s e d  i s o t o p e  effect  a l so  ex is t s  i n  t h e  s u p e r c o n d u c t i n g  tem- 

p e r a t u r e s  of metals c o n t a i n i n g  hydrogen and d e u t e r i u m ,  which 
5 o t h e r w i s e  are nonsupe rconduc to r s  i n  t h e i r  p u r e  metallic form. 

P e r h a p s ,  most r e l e v a n t  is t h e  e x i s t e n c e  o f  s p i n o d a l s  and r e l a t i v e l y  

large r e g i o n s  of m e t a s t a b i l i t y  i n  t h e  p h a s e  s p a c e  of d e n s i t y  

and t e m p e r a t u r e .  6 ’ 7  They s t r o n g l y  s u g g e s t  t h a t  below t h e  c r i t i c a l  

t e m p e r a t u r e  T t h e  i n t e r s t i t i a l  hydrogen e x i s t s  i n  c l u s t e r s .  
C ’  

These p h y s i c a l  facts  p r o v i d e  c l u e s  fo r  c o n s t r u c t i n g  a micro- 

s c o p i c  model (which we s h a l l  d e n o t e  by H). A m i c r o s c o p i c  model 

is a f irst  i tem i n  d e v e l o p i n g  a t h e o r y  o f  i n t e r s t i t i a l - h y d r o g e n  

d i f f u s i o n .  Such a model must be a dynamical  o n e ,  i n c o r p o r a t i n g  

s p i n  s t a t i s t i c s  and c o o p e r a t i v e  forces.  There are a few models 

i n  t h e  l i t e r a t u r e .  However, most of them i g n o r e  much o f  t h e  

p h y s i c a l  r ea l i t i es .  For  example,  some models  can t rea t  o n l y  

t h e  d i l u t e  d e n s i t y  l i m i t  ( i . e . ,  s ing le -a tom hopp ing)  or  t h e  i d e a l  

l i m i t  ( i . e . ,  n o  c o o p e r a t i v e  forces) .  O t h e r s  can  t rea t  o n l y  

t h e  h igh - t empera tu re  l i m i t  (c lass ical  r e g i o n ) .  l o  V i r t u a l l y  a l l  

e x i s t i n g  models  are non-dynamical o r  non-microscopic .  One c a n n o t  

u s e  them t o  c a l c u l a t e  t h e  t r a n s p o r t  c o e f f i c i e n t s  s t a r t i n g  from 

f i r s t  p r i n c i p l e s .  
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D i f f u s i o n  i n  a homogeneous many-body sys t em is c h a r a c t e r i z e d  
by the  s e l f - d i f f u s i o n  c o n s t a n t .  T h i s  c o n s t a n t  can  be c a l c u l a t e d  

from c e r t a i n  t ime-dependent  a u t o c o r r e l a t i o n  f u n c t i o n s  e-g. t h e  

v e l o c i t y  a u t o c o r r e l a t i o n  f u n c t i o n  by a w e l l - e s t a b l i s h e d  r e l a t i o n -  .. 
I I  s h i p .  Given a model o r  H ,  t h e  a u t o c o r r e l a t i o n  f u n c t i o n s  are  

o b t a i n e d  by s o l v i n g  t h e  He i senbe rg  e q u a t i o n  of motion.  For 

N - m (where N is t h e  number of p a r t i c l e s  o r  some o t h e r  basic 

aggregates, i . e . ,  f u n c t i o n a l  u n i t s ) ,  s o l v i n g  t h e  He i senbe rg  
e q u a t i o n  r e q u i r e s  a s p e c i a l  ma themat i ca l  t e c h n i q u e .  l 2  Thus 

s t u d y i n g  d i f f u s i o n  from f i rs t  p r i n c i p l e s  r e q u i r e s  a dynamical  
m i c r o s c o p i c  model H and t h e  a u t o c o r r e l a t i o n  f u n c t i o n s .  

I n  Sec. 11, we describe a dynamical  model for  the  i n t e r s t i t i a l  

hydrogen and d e u t e r i u m  based on quantum s ta t i s t ica l  t h e o r y .  

There are two e s s e n t i a l  p h y s i c a l  ideas c h a r a c t e r i z i n g  o u r  model: 

( 1 )  For  t e m p e r a t u r e  below t h e  t r a n s i t i o n  t e m p e r a t u r e  T the  

f u n c t i o n a l  u n i t s  are c l u s t e r s ,  n o t  s i n g l e  p a r t i c l e s .  These 

c l u s t e r s  are composed of s i n g l e  p a r t i c l e s  and s e l f - s t a b i l i z e d  by 

s p i n  s t a t i s t i c s .  The s i z e s  and numbers of c l u s t e r s  a l s o  depend 
on t e m p e r a t u r e  T and f o r c e s .  For  T > T c ,  these c l u s t e r s  break down 

and there  are o n l y  s i n g l e  p a r t h l e s .  ( 2 )  F o r c e s  between c l u s t e r s  

are long-ranged.  S h o r t - r a n g e  forces are " i n t e g r a t e d - o u t "  i n  

fo rming  c l u s t e r s .  To p r e v e n t  mutua l  p e n e t r a t i o n  by these  c l u s t e r s ,  

a hard-core-like p r o p e r t y  is b u i l t  i n t o  t h e  k i n e m a t i c s  of t he  

model. 

C '  

The s t a t i c  c r i t i ca l  b e h a v i o r  is  de te rmined  by the c l u s t e r -  

c l u s t e r  i n t e r a c t i o n .  Our model e x h i b i t s  first and second o r d e r  
t r a n s i t i o n s .  There i s  a t r i c r i t i c a l  p o i n t .  It shows t h a t  t h e  

c r i t i ca l  t e m p e r a t u r e ,  f o r  example,  h a r d l y  depends  on t h e  c l u s t e r  

s izes  or  masses, i .e.  i s o t o p e  independen t .  The dynamical  b e h a v i o r ,  
however,  arises from t h e  mot ions  of c l u s t e r s .  The s i zes  and 

masses s h o u l d  therefore e n t e r  i n t o  t h e  s t r u c t u r e  of t h e  t r a n s p o r t  

c o e f f i c i e n t s .  I n  atomic and n u c l e a r  p h y s i c s  one f i n d s  c l u s t e r s  

which are s t a b i l i z e d  by s p i n  s ta t is t ics .  A v a i l a b l e  e v i d e n c e  

on these c l u s t e r s  shows t h a t  t h e  Bose c l u s t e r s  are s t a b i l i z e d  by 

v e r y  few Bose p a r t i c l e s ,  whereas t h e  F e r m i  c l u s t e r s  by larger 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
3
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1278 LEE 

numbers o f  F e r m i  p a r t i c l e s .  I f  o u r  i n t e r s t i t i a l  c l u s t e r s  have  

similar p r o p e r t i e s ,  our model h a s  a b a s i s  f o r  e x p l a i n i n g  t h e  

r e v e r s e d  i s o t o p e  e f f e c t .  Our model a c t u a l l y  makes a p r e d i c t i o n  

on t h e  r e l a t i v e  d i f f u s i o n  c o e f f i c i e n t s .  

I n  Sec .  111, we d e s c r i b e  a new ma themat i ca l  t e c h n i q u e  o f  

s o l v i n g  t h e  He i senbe rg  e q u a t i o n  o f  motion f o r  many-body sys t ems .  

The o r i g i n a l  i d e a  was g i v e n  by H .  Mori i n  1965 who showed t h a t  

t h e  He i senbe rg  e q u a t i o n  is e q u i v a l e n t  t o  a g e n e r a l i z e d  v e r s i o n  
IL  o f  t h e  quantum Langevin e q u a t i o n .  The Langevin e q u a t i o n  o f  

c o u r s e  is well known f o r  i ts  c o n n e c t i o n  t o  Brownian motion and 

is wide ly  a p p l i e d  today  f o r  s t o c h a s t i c  p r o c e s s e s .  l 1  Th i s  

unexpected fo rma l  c o n n e c t i o n  p rov ided  Mori w i t h  an i n s i g h t  i n t o  

t h e  He i senbe rg  e q u a t i o n .  But  because  o f  c e r t a i n  t e c h n i c a l  d i f f i -  

c u l t i e s  (stemming from c o n t i n u e d  f r a c t i o n s  which have t o  do wi th  

t h e  ma themat i ca l  t h e o r y  of t h e  problem o f  moments),  he was unab le  

t o  o b t a i n  comple t e  fo rma l  s o l u t i o n s  for  t h e  He i senbe rg  e q u a t i o n .  

Very r e c e n t l y  t h e  a u t h o r  was a b l e  t o  o b t a i n  c o m p l e t e  mathe- 

matical s o l u t i o n s  f o r  t h e  He i senbe rg  e q u a t i o n  u s i n g  H i l b e r t  s p a c e  

t h e o r y . 1 3  It  was made p o s s i b l e  by t h e  r e a l i z a t i o n  t h a t  Mor i ' s  

app roach  is couched i n  t h e  Gram-Schmidt o r t h o g o n a l i z a t i o n  p r o c e s s .  

Although v a l i d ,  t h i s  p r o c e s s  c o m p l i c a t e s ,  n o t  s i m p l i f i e s ,  t h e  

He i senbe rg  e q u a t i o n .  A new o r t h o g o n a l i z a t i o n  p r o c e s s  (named 

t h e  o r t h o g o n a l i z a t i o n  by r e c u r r e n c e  r e l a t i o n s )  e x p r e s s e s  t h e  

He i senbe rg  e q u a t i o n  i n t o  a s e t  o f  t ime-dependent  f u n c t i o n s .  
1 14 These f u n c t i o n s  are a l l  l i n k e d  by an e x a c t  r e c u r r e n c e  r e l a t i o n .  

Th i s  method was f i r s t  a p p l i e d  t o  s t u d y  t h e  dynamics o f  e l e c t r o n s  

i n  normal metals i n  two and t h r e e  d i m e n s i o n s ,  f o r  which t h e r e  are 

well e s t a b l i s h e d  (and r e l a t i v e l y  s i m p l e )  models .  l 5  T h i s  paper  

d e s c r i b e s  some o f  o u r  i n i t i a l  work on t h e  c l u s t e r  model by t h e  

method o f  r e c u r r e n c e  r e l a t i o n s .  

11. PHYSICAL MODEL 

A .  P h y s i c a l  I n f o r m a t i o n  

We w i l l  b r i e f l y  summarize main e x p e r i m e n t a l  facts  which 

are b a s i c  i n g r e d i e n t s  f o r  our  d i f f u s i o n  model. The e x p e r i m e n t a l  
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e v i d e n c e  i s  o b t a i n e d  l a r g e l y  from t h e  Pd-H sys t em.  ( 1 )  Neutron 

s c a t t e r i n g .  The s c a t t e r i n g  e x p e r i m e n t s  show t h a t  t h e  abso rbed  

hydrogen atoms occupy t h e  i n t e r s t i t i a l  s i t es  o f  t h e  h o s t  l a t t i c e .  
16 These s i tes  form an  o c t a h e d r a l  s u b l a t t i c e  o f  t h e  fcc  s t r u c t u r e .  

( 2 )  a-f3 t r a n s i t i o n .  The abso rbed  hydrogen unde rgoes  a g a s - l i q u i d -  

l i k e  phase  t r a n s i t i o n .  The re  i s  a c r i t i c a l  p o i n t  which is 

c o m p l e t e l y  ~ n e a n - f i e l d - l i k e . ~  From t h e s e  r e s u l t s ,  w e  i n f e r  t h a t  

t h e r e  are c o o p e r a t i v e  f o r c e s  and t h a t  t h e s e  f o r c e s  are  long-ranged 

and r o u g h l y  c o n s t a n t .  Such forces can  o n l y  a r i se  from t h e  large 

c o m p r e s s i b i l i t y  o f  t h e  l a t t i c e  w i t h  r e s p e c t  t o  i n t e r s t i t i a l  

o c c u p a t i o n .  Consequen t ly  t h e  s u b l a t t i c e  of hydrogen must be 

a n o n r i g i d  one.  l 7  ( 3 )  S p i n o d a l s  and m e t a s t a b i l i t y .  Recent  

measurements o f  s p i n o d a l s  show t h a t  t h e r e  are  large areas o f  

m e t a s t a b i l i t y  bounded by t h e  s o l u b i l i t y  and c o h e r e n t  s p i n o d a l  

c u r v e s .  6 1 7  The c u r v e s  do n o t  even  meet a t  Tc and are  s e p a r a t e d  

a t  a l l  t e m p e r a t u r e  v a l u e s .  I n  t hese  areas one knows t h a t  

n u c l e a t i o n  and growth t a k e  p l a c e  v i a  c l u s t e r  f o r m a t i o n .  Hence 

t h e r e  must be some t y p e s  o f  a t o m i c  c l u s t e r s .  ( 4 )  Compton 

prof i les .  1 8 s 2 0  Exper imen ta l  p r o f i l e s  s t r o n g l y  s u g g e s t  t h a t  

t h e  i n t e r s t i t i a l  hydrogen i s  v e r y  n e a r l y  p r o t o n - l i k e  b e r e f t  of 

t h e  e l e c t r o n  c l o u d .  S i m i l a r l y  t h e  i n t e r s t i t i a l  d e u t e r i u m  is  

d e u t e r o n - l i k e .  The i n t e r s t i t i a l s  c a r r y  a t  b e s t  a v e r y  small 

f r a c t i o n  o f  t h e  e l e c t r o n  c h a r g e  and t h e y  are e f f e c t i v e l y  b a r e  

n u c l e o n s ,  i . e.  , f e rmions  o r  bosons . ( 5 )  Reversed i s o t o p e  

e f fec t .  1 ’21 ’22  The e x i s t e n c e  o f  a r e v e r s e d  i s o t o p e  effect  i n d i -  

cates t h a t  t h e  fundamental  dynamical  p r o c e s s e s  o f  hydrogen 

d i f f u s i o n  have quantum mechan ica l  o r i g i n .  Classical ra te  t h e o r i e s  

are n o t  a p p l i c a b l e  i n  t h e i r  u s u a l  form. 

We assume t h a t  below Tc t h e  f u n c t i o n a l  u n i t s  are  c l u s t e r s .  

These c l u s t e r s  a r e  composed o f  p r o t o n s  ( F e r m i  c l u s t e r s )  o r  

d e u t e r o n s  (Bose c l u s t e r s ) .  Above T t h e  c l u s t e r s  b reak  up i n t o  

t h e  c o n s t i t u e n t  s i n g l e  p a r t i c l e s .  The mechanisms o f  c l u s t e r  

f o r m a t i o n ,  t h e  c l u s t e r  s i z e s ,  s t a b i l i t y  and t e m p e r a t u r e  dependence 

( r e f e r r e d  t o  as s i n g l e - c l u s t e r  p r o p e r t i e s )  w i l l  be d i s c u s s e d  

i n  Sec .  V I .  S i n g l e - c l u s t e r  p r o p e r t i e s  depend on s p i n  s t a t i s t i c s  

e x p l i c i t l y .  

C ’  
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For T < Tc o u r  sys t em i s  an  ensemble of i n t e r a c t i n g  c l u s t e r s  

of Fermi o r  Bose t y p e .  The forces between c l u s t e r s  are  assumed 

t o  be long-range b u t  c o n s t a n t  and i n d e p e n d e n t  of s p i n  s ta t i s t ics .  

Then t h e  ensembles  of b o t h  t h e  Fermi and  Bose c l u s t e r s  have  t h e  

same many-body p r o p e r t i e s  e.g. phase  t r a n s i t i o n .  Any s u b t l e  

d i f f e r e n c e  e.g. r e v e r s e d  i s o t o p e  effect  must u l t i m a t e l y  ar ise  from 

s i n g l e - c l u s t e r  p r o p e r t i e s .  

0 .  P a r t i t i o n  F u n c t i o n  and T r a n s f o r m a t i o n  

I t  is c o n v e n i e n t  and now cus tomary  t o  d e s c r i b e  many-body 
23 s y s t e m s  l i k e  o u r s  i n  t h e  l a n g u a g e  o f  second q u a n t i z a t i o n .  

We u s e  pseudospin-;  o p e r a t o r s ,  si+ and s - d e f i n e d  as follows: 

s .  X , Y , Z ,  

are t h e  t h r e e  P a u l i  matrices a t  l a t t i c e  s i te  i. These o p e r a t o r s  

ac t  on c l u s t e r s  and t h e y  s a t i s f y  spin-;  a l g e b r a .  24 Tha t  i s ,  

a t  t h e  same s i t e  t h e s e  o p e r a t o r s  ant icommute and a t  d i f f e r e n t  

s i tes t h e y  commute. The s p i n  a l g e b r a  p r e v e n t s  c l u s t e r s  from 

p e n e t r a t i n g  each o t h e r .  Our Hami l ton ian  H ,  which d e f i n e s  o u r  

model,  is g i v e n  by 

i 
where s i IJ , il 

2 
= six f i siy and si' si+ = 8 f s i '  

25 

where h is t h e  P lanck  c o n s t a n t ,  M is t h e  mass o f  a c l u s t e r ,  d t h e  

a v e r a g e  c l u s t e r  s p a c i n g ,  x and Xu are t h e  h o s t  metal's i n s t a n -  

t a n e o u s  and e q u i l i b r i u m  c o o r d i n a t e s ,  r e s p e c t i v e l y ;  U.. is t h e  

i n t e r s t i t i a l  o c c u p a t i o n  e n e r g y  due  t o  t r a n s i t i o n  between a p a i r  

o f  n e i g h b o r i n g  sites i and  j ;  A is  t h e  l a t t i c e  s p r i n g  c o n s t a n t .  

The  model c o n t a i n s  o n l y  t h e  p a i r - w i s e  i n t e r a c t i o n  and it 

l i m i t s  t h e  c l u s t e r  t r a n s i t i o n  t o  nea r -ne ighbor  p a i r s  o n l y .  A s  

a many-body model, i t  h a s  a r e l a t i v e l y  s i m p l e  form of e n e r g y .  

One can o b t a i n  a l l  t h e  e q u i l i b r i u m  p r o p e r t i e s  form t h e  p a r t i t i o n  

f u n c t i o n  2 = T r  exp(-HIkT),  where k is t h e  Boltzmann c o n s t a n t  

Q 

1 J  
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HYDROGEN CLUSTERS 1281 

and T r  means a d i a g o n a l  sum. A d i r e c t  e v a l u a t i o n  of the p a r t i t i o n  
f u n c t i o n  is d i f f i c u l t  because  o f  t h e  n o n r i g i d n e s s  of the  s u b l a t t i c e .  

By a p p l y i n g  a u n i t a r y  t r a n s f o r m a t i o n  fl  under  which 2 is i n v a r i a n t ,  
one can remove the n o n r i g i d n e s s  a t  t h e  expense  o f  h a v i n g  a more 

c o m p l i c a t e d  form of t h e  i n t e r a c t i o n .  The u n i t a r y - t r a n s f o r m e d  
model = S H f  may c o n t a i n  mult i -body terms, b u t  t h e y  may be 

more e a s i l y  approx ima ted .  The t r a n s f o r m a t i o n  i t s e l f  is r a t h e r  

t e c h n i c a l  and w i l l  n o t  b e  g i v e n  here .25 Our u n i t a r y - t r a n s f o r m e d  

1 

model has  t h e  f o l l o w i n g  form 

The u n i t a r y  t r a n s f o r m a t i o n  has removed t h e  r i g i d n e s s  b u t  i n t r o d u c e s  

a b i q u a d r a t i c  c o u p l i n g .  

C.  Cons tan t - coup l ing  Approximation 

It is v e r y  well e s t a b l i s h e d  t h a t  t h e  c r i t i ca l  behav io r  
Hence for ( 2 )  we make the  f o l l o w i n g  o f  PdH is ~ n e a n - f i e l d - l i k e . ~  

mean-f ie ld  approx ima t ion :  

where E and U are now c o n s t a n t s  and 6 is t h e  Kronecker  d e l t a .  
Then 

- iMF = - E i’j s i+ s j- - L i’j &(si+sj-)(sisn-) (3 )  

2 where L = U 1 2 8 .  The mean-f ie ld  model c o n s i s t s  of q u a d r a t i c  

and b i q u a d r a t i c  s p i n  exchange terms and t h i s  model is s o l u b l e .  

From the  r e c e n t  work of Lee and B a n e r j e e , 2 6  we see t h a t  t h i s  

p a r t i c u l a r  form is a s p e c i a l  case of t h e  b i q u a d r a t i c  g e n e r a l -  

i z a t i o n  of t he  s p i n  van d e r  Waals model of Dekeyser  and Lee 
H D L , 2 7  g i v e n  below: 
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(4) HCL = - ( J  S 2 - X S z  2 - (Q S 4  - 2Q s 2 2  s z  + rl sz4) ,  

where  A = J - Jz ,  Q = Q - Qz; J ,  J a n d  Q, QZ are ,  r e s p e c t i v e l y ,  

t h e  q u a d r a t i c  a n d  b i q u a d r a t i c  e x c h a n g e  c o n s t a n t s .  The total 

p s e u d o s p i n  o p e r a t o r  S is g i v e n  by 
P 

N 

where  N is t h e  t o t a l  number  of p s e u d o s p i n s  ( i . e . ,  t h e  s u b l a t t i c e  

p o i n t s ) .  = 0. 

K i m  e x t e n d e d  t h e i r  work by s t u d y i n g  t h e  f u l l  The’mean- 

f i e l d  model  ( 3 )  r e p r e s e n t s  t h e  case i n  w h i c h  E = J ,  L = Q, 
Jz  = Q = 0 .  Hence we u n d e r s t a n d  t h e  s t a t i c  p r o p e r t i e s  of ( 3 )  
c o m p l e t e l y .  F o r  Q < Q o  F 2 5 1 3 ,  t h e  model  h a s  a s e c o n d  o r d e r  

t r a n s i t i o n  d e f i n e d  by T = J f 2 k  i n d e p e n d e n t l y  of Q .  T h e r e  is 

d i p o l a r  o r d e r i n g  b u t  n o  q u a d r u p o l a r  o r d e r i n g  b e l o w  T . Above 

Tc t h e r e  is n o  l o n g - r a n g e  o r d e r  a t  a l l .  A t  Q = Qo, T = T 
C’  

t h e  s e c o n d  o r d e r  ceases a n d  t h e  f i rs t  o r d e r  b e g i n s .  The p o i n t ,  

Qo and T c ,  is a t r i c r i t i c a l  p o i n t .  The b o u n d a r y  of t h e  f i rs t  

o r d e r  r e g i o n  is d e s c r i b e d  by T c ( Q )  = T c ( Q / Q p ) i ,  QZQo. Hence 

f o r  WQ t h e  s y s t e m  b e h a v e s  e s s e n t i a l l y  l i k e  t h e  p u r e  s p i n  v a n  

d e r  Waals w i t h  l i t t l e  o r  n o  i n f l u e n c e  by t h e  b i q u a d r a t i c  e x c h a n g e .  

To o b t a i n  n o n e q u i l i b r i u m  p r o p e r t i e s ,  w e  u s e  t h e  method of re- 
c u r r e n c e  r e l a t i o n s  d e s c r i b e d  i n  Sec. 111. 

D e k e y s e r  a n d  Lee27 s t u d i e d  t h i s  model  when Q Q 

C 

0’  

( R R s  

s t a t  

111. THE METHOD OF RECURRENCE RELATIONS 

We s h a l l  b r i e f l y  d e s c r i b e  t h e  method of r e c u r r e n c e  r e l a t i o n s  

, m a i n l y  t o  i n t r o d u c e  t h e  n o t a t i o n  of n o n e q u i l i b r i u m  

s t i c a l  m e c h a n i c s  n e e d e d  for  c a l c u l a t i n g  v a r i o u s  time- 

d e p e n d e n t  a u t o c o r r e l a t i o n  f u n c t i o n s  e.g. t h e  v e l o c i t y  a u t o c o r -  

r e l a t i o n  f u n c t i o n .  C o n s i d e r  a d y n a m i c a l  v a r i a b l e  o f  i n t e r e s t ,  

s a y  A ,  w h i c h  may be t h e  v e l o c i t y  of a c l u s t e r  o r  t h e  c l u s t e r -  

d e n s i t y  f l u c t u a t i o n s .  The time e v o l u t i o n  is d e n o t e d  by A ( t ) ,  

f o r m a l l y  g i v e n  by t h e  H e i s e n b e r g  r e p r e s e n t a t i o n  
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HYDROGEN CLUSTERS 

A ( t )  = e x p ( i H t )  A e x p ( - i H t ) ,  

which satisfies t h e  He i senbe rg  e q u a t i o n  of motion 

where t h e  d o t  d e n o t e s  a d e r i v a t i v e  w i t h  r e s p e c t  t o  time. The 

p h y s i c a l  i n f o r m a t i o n  c o n t a i n e d  i n  A ( t )  is e x t r a c t e d  by fo rming  

an a u t o c o r r e l a t i o n  f u n c t i o n  ( A ( t ) ,  A ) ,  where t h e  i n n e r  p r o d u c t  

u s u a l l y  means t h e  Kubo scalar p r o d u c t .  l 3  Sometimes it can be 

approx ima ted  by a c a n n o n i c a l  ensemble a v e r a g e  

< A ( t ) A >  = T r { A ( t )  A exp ( -H/kT)} /Z .  The method of  RRs s o l v e s  

t h e  He i senbe rg  e q u a t i o n  f o r m a l l y .  Given A ( t ) ,  t h e r e  is a second  

independen t  dynamical  q u a n t i t y  c a l l e d  t h e  random f o r c e  F ( t ) ,  

r e s p o n s i b l e  f o r  t h e  memory o f  an  e x t e r n a l l y  induced p e r t u r b a t i o n .  

The method of R R s  g i v e s  t h e  f o l l o w i n g  s o l u t i o n s  for A ( t )  and 

F ( t ) :  
a0 

where { f n )  i s  a se t  o f  o r t h o g o n a l i z e d  b a s i s  v e c t o r s  which span 

t h e  H i l b e r t  s p a c e  of  A ;  {an )  and { b are sets o f  real  time- n 
dependen t  f u n c t i o n s .  I n  l i n e a r  r e s p o n s e  t h e o r y ,  a and b,  are 

23 c a l l e d  t h e  r e l a x a t i o n  and memory f u n c t i o n s ,  r e s p e c t i v e l y .  

The above R R  ( r e f e r r e d  t o  as R R - I )  r e p r e s e n t s  an  o r t h o g o n a l i z a -  

t i o n  p r o c e s s ;  and it is s u p e r i o r  t o  t h e  u s u a l  Gram-Schmidt 

p r o c e s s 1  i f  H i l b e r t  s p a c e  i s  r e a l i z e d .  

0 

14 

There i s  a second  R R  ( r e f e r r e d  t o  as  R R - 1 1 )  which is 

s a t i s f i e d  by { an} 

A n + l  a n + , ( t )  = - a n ( t )  + a n - l ( t ) ,  n:O 

where a-l = 0 and An = d a n / d t .  A l so  { b 1 sa t i s f ies  t h e  same 

RR s t a r t i n g  w i t h  n = 1 .  The R R - I 1  is c h a r a c t e r i z e d  by A ’ s ,  which 

are f u n c t i o n s  of s t a t i c  p r o p e r t i e s  o n l y .  If A ’ s  are known 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
3
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1284 LEE 

MF ( e x a c t l y  c a l c u l a b l e  for  o u r  mean- f i e ld  model R ) ,  one may be 

a b l e  t o  o b t a i n  a n ( t )  and b n ( t )  and hence A ( t )  and F ( t ) .  

For  d e t a i l ,  w e  refer  t o  t h e  o r i g i n a l  p a p e r s .  1 3 ' 1 4  T h i s  

method has  been s u c c e s s f u l l y  a p p l i e d  t o  e l e c t r o n  t r a n s p o r t  pro-  

cesses i n  normal  metals. 15 

I V .  AUTOCORRELATION FUNCTIONS 

Fo l lowing  t h e  method o f  RRs w e  s h a l l  c a l c u l a t e  A ' s  for  

HDL c o n f i n i n g  o u r s e l v e s  t o  Q < Q  Recall t h a t  hMF is  

a s p e c i a l  case o f  t h e  b i q u a d r a t i c  s p i n  van d e r  Waals. Our cal-  

c u l a t i o n s  show t h a t  ' s  f o l l o w  a ve ry  s i m p l e  form: 

and T<Tc .  

A = nA 

where A =  2AkT/N. For  t h i s  set o f  A ' s ,  t h e  R R - I 1  i s  u n i q u e l y  

s a t i s f i e d  by 

( 7 )  
a n ( t )  = ( A h n t n / n ! )  exp(-$At 2 ) 

f o r  a l l  n>O. We do  n o t  have a c l o s e d  e x p r e s s i o n  f o r  b ( t )  b u t  

o n l y  a series form i n  powers of A t ( for  s i m p l i c i t y  A is s u p p r e s s e d  
- n t 

i n  t h e  f o l l o w i n g ) :  

2 4 6 8 b , ( t )  = 1 - 2 t  / 2 !  + 1 0 t  / 4 !  - 7 4 t  / 6 !  + 7 0 6 t  / 8  

10 - 8 1 6 2 t  I10 + . . . 
3 5 7 9 b 2 ( t )  = t - 5 t  / 3 !  + 3 7 t  / 5 !  - 353 t  /7!  + 4081 t  

2 4 6 8 

3 5 7 

b ( t )  t /2 !  - 9 t  / 4 !  + 9 3 t  / 6 !  - 1125t  /8! + . 3 

b Q ( t )  t /3!  - 1 4 t  /5! + 1 9 3 t  / 7 !  - . . . 

9 !  - .  ~ 

. .  

( 8 )  

and so on.  Now a and bn are e x a c t l y  r e l a t e d  by c o n v o l u t i o n  n 

Hence anyone of (bn}  is e f f e c t i v e l y  known t o  any  o r d e r  o f  a series 

e x p a n s i o n ,  e.g. 
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2 
d t '  exp( -$ t '  b l ( t - t ' ) .  

2 2 2 Observe t h a t  b l ( t )  # A l ( t )  ( 1  - t exp(-&t  ) = 1 - 3 t  /2!  

+ 15t / 4 !  - 105t  / 6 !  + 945t  /8! - . . . . For t s m a l l ,  c l e a r l y  

b l ( t )  > il(t). Now t h e  c l u s t e r  m o b i l i t y  p is g iven  b y v = r d t  b l ( t )  

S i n c e  d t  ( t )  = 0,  w e  conclude t h a t  p > 0. The memory 'function 

b l ( t )  t%us d i r e c t l y  y i e l d s  a f i n i t e  v a l u e  f o r  t h e  m o b i l i t y  as 
a f u n c t i o n  of tempera ture  conta ined  i n  A -  

The s e l f - d i f f u s i o n  c o n s t a n t  D can be deduced from t h e  

4 6 8 

r '  
r e l a x a t i o n  f u n c t i o n  ao ( t )  as DS = a4 s f  , where a is a c o n s t a n t  

depending only a k inemat ica l  f a c t o r s .  29 The d i f f u s i o n  c o n s t a n t  
c o n t a i n s  t h e  c l u s t e r  mass M i n  A through E (see o u r  o r i g i n a l  

express ion  f o r  t h e  model). For t h e  r e g i o n  P<<Po,  E :: h2/2Md2 

and the s e l f - d i f f u s i o n  is expected t o  d e c r e a s e  wi th  t h e  growth 

of t h e  c l u s t e r  mass. To e v a l u a t e  D a b s o l u t e l y ,  we need t o  know 
t h e  k inemat ica l  f a c t o r s ,  most o f  which are st i l l  u n a v a i l a b l e  

from experiment. We can however use  o u r  r e s u l t  t o  o b t a i n  an 

express ion  which g i v e s  t h e  r e l a t i v e  s ize  of proton and deuteron  

c l u s t e r s  i n  terms o f  some measurable q u a n t i t i e s .  

S 

Our formal r e s u l t  a p p l i e s  e q u a l l y  t o  proton and deuteron  

c l u s t e r s .  The e s s e n t i a l  d i f f e r e n c e  between t h e  two t y p e s  of 

c l u s t e r s  is assumed to  ar ise  from s i n g l e - c l u s t e r  p r o p e r t i e s .  

For example, t h e  pro ton  and deuteron  c l u s t e r s  should n o t  have 

t h e  same size a t  t h e  same tempera ture  s i n c e  t h e  p h y s i c a l  mechanisms 

of t h e i r  formation depend on statist ics e x p l i c i t l y .  T h a t  i s ,  

a t  a g iven  tempera ture ,  t h e  proton and deuteron  c l u s t e r s  d i f fe r  

cons iderably  i n  s i z e  and hence i n  mass. Now t h e  exper imenta l  
d i f f u s i o n  data are u s u a l l y  f i t t e d  t o  t h e  Arrhenius  form 1 

DS = Do exp (-W/kt) ( 1 1 )  

where D i s  a c o n s t a n t  p r o p o r t i o n a l  t o  mo-' ( m o  t h e  mass of  t h e  

d i f f u s i n g  u n i t  which may be a s i n g l e  p a r t i c l e  or c l u s t e r )  and 
W is t h e  a c t i v a t i o n  energy. For 200K < T < 500k, Valkl  e t  a121 

have f i t t e d  t h e  data from t h e  d i f f u s i o n  o f  t h e  hydrogen i s o t o p e s  
p and d i n  Pd by 

0 
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w h e r e  W = W - Wd a n d  W / W  0 .1 .  Note t h a t  Tc = 566k fo r  

PdH . 
P d  p Pd P 

’ile i n t r o d u c e  a mass number z ,  w h i c h  i s  t h e  a v e r a g e  number 

of s i n g l e  p a r t i c l e s  i n  a c l u s t e r  d e f i n e d  by z M / m ,  w h e r e  m 

i s  t h e  s i n g l e - p a r t i c l e  mass a n d  M t h e  c l u s t e r  mass. Then u s i n g  

o m  r e s u l t s  f o r  Ds a n d  c o m b i n i n g  it w i t h  t h e  A r r h e n i u s  f o r m ,  

we get 

t3 5 z d / z p  I e x p  (-W / k T ) .  ( 1 3 )  
Pd 

F o r  h i g h  t e m p e r a t u r e ,  M-m a n d  2-1. Hence €3 - 1 ,  i . e . ,  t h e r e  are 

n o  c l u s t e r s ,  o n l y  s i n g l e  p a r t i c l e s .  F o r  low t e m p e r a t u r e , e  < 1 ,  

i . e . ,  t h e  p r o t o n  c l u s t e r s  are o n  t h e  a v e r a g e  larger t h a n  t h e  

d e u t e r m  c l u s t e r s .  T h i s  c a n  a c c o u n t  f o r  t h e  r e v e r s e d  i s o t o p e  

e f f e c t  i n  d i f f u s i o n .  The e x p o n e n t i a l  factor  a p p r o x i m a t e l y  i n -  

d i c a t e s  t h e  d e g r e e  o f  i n v o l v e m e n t  by c l u s t e r s  i n  t h e  d i f f u s i o n  

p r o c e s s .  The a b o v e  r e s u l t  may b e  r e g a r d e d  as a semi-phenomeno- 

l o g i c a l  r a t e - t h e o r y  e x p r e s s i o n  f o r  c l u s t e r s .  

V .  SINGLE-CLUSTER AUTOCORRELATION FUNCTION 

I t  is p o s s i b l e  t o  o b t a i n  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  f o r  

a s i n g l e  c l u s t e r  i n i t i a l l y  l o c a l i z e d  a t  s i t e  0. T h e r e  are t h r e e  

d L a g o n a l  e l e m e n t s  G ( t )  = < s p ( t )  s ’>,  p = x ,  y ,  z .  The s i x  non-  

d i a g o n a l  e l e m e n t s  v a n i s h  fo r  o u r  m e a n - f i e l d  model .  The r o t a t i o n a l  

symmetr,y of o u r  model  a l s o  makes Gxx = C 

o n l y  tuo n o n - z e r o  e l e m e n t s  of t h e  a u t o c o r r e l a t i o n  f u n c t i o n .  

r; is more i n t e r e s t i n g  t h a n  GZz.  Hence  we d i s c u s s  t h e  former 

PP 0 0 

Hence t h e r e  are  
Y Y ’  

xx 
o n l y .  

We are p r i n c i p a l l y  c o n c e r n e d  w i t h  t h e  l o n g - t i m e  b e h a v i o r  

( t , - - ) ,  w h i c h  c a n  be  most r e a d i l y  compared  w i t h  e x p e r i m e n t .  To 

s o l v e  t h i s  p r o b l e m  w e  f i r s t  d i v i d e  o u r  s y s t e m  i n t o  two s u b s y s t e m s ,  

o n e  small a n d  o n e  large.  The small s u b s y s t e m  c o n t a i n s  o n l y  t h e  

t a g g e d  c l u s t e r  a n d  t h e  large s u b s y s t e m  c o n t a i n s  t h e  rest. A 
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great d e a l  of s i m p l i f i c a t i o n  arises i f  w e  can regard t h e  large 

subsys t em as a thermal b a t h  o r  r e s e r v o i r  for  the  tagged c l u s t e r .  

Using o u r  p r e v i o u s  r e s u l t s ,  we f i n d  t h a t  30 

X G ( t )  <s ( t )  sox> xx 0 

( 1 4 )  2 2 2 
1 2 

= 4 lo du e-Bu ( 1  - 2 Bu ) ( 1  - u ) / ( 1  - u u  

+ t I, du e -Br ( 1  - 2 B r 2 )  [ l  + bu(1  - uu2)- ' I2 ,  
1 2 

2 2 where B = (abJt /N) ' ,  a2 = N I ( E - J / k T ) ,  b = 4(2-J/kT), u = 1-b , 
r = u - ( 1  - u u  ) / b .  The above i n t e g r a l s  can be e v a l u a t e d  a n a l y -  
t i c a l l y  for  t-- 

2 4  

G xx ( t )  & f i b 2  B'3/2 + &b4 B-l c o n s t .  t-', ( 1 5 )  

where t h e  first term can  be dropped compared w i t h  t h e  second f o r  

t-m. The a u t o c o r r e l a t i o n  f h n c t i o n  shows a long-t ime t a i l ,  r a t h e r  

t h a n  an  e x p o n e n t i a l  d e c a y  ( O r n s t e i n - Z e r n i c k e ) .  The e x i s t e n c e  

o f  long time-tails, f irst  s u g g e s t e d  by computer  s i m u l a t i o n s  u s i n g  
40 Brownian-l ike s y s t e m s ,  has  been a s o u r c e  of c o n t r o v e r s y  r e c e n t l y .  

Long-time t a i l s  i n d i c a t e  t h a t  t h e  time c o r r e l a t i o n s  p e r s i s t  f o r  

a l o n g  p e r i o d  o f  time and t h e  d i s p e r s a l  o f  p a r t i c l e s  o r  c l u s t e r s  

( i - e .  d i f f u s i o n )  t a k e s  p l a c e  v e r y  s l o w l y .  We can show t h a t  t h e  

long-t ime t a i l s  do  n o t  a lways  e x i s t  i n  HDL. D e f i n i n g  R = Jz / J ,  

we f i n d  fo r  R 2 2 ,  C x x ( t )  = e x p ( - g t  ) fo r  some g>O. Bu t  for  

O<R<2 ( b u t  R # 11, C x x ( t )  c o n s t .  t-3. For R 1 ,  C x x ( t )  is 

a lso  Gauss i an .  Our f i rs t  r e s u l t  c o r r e s p o n d s  t o  R = 0. T h i s  

r a t h e r  remarkable b e h a v i o r  i n d i c a t e s  t h a t  t h e  motion o f  a c l u s t e r  
depends  s e n s i t i v e l y  on t h e  symmetry of competing i n t e r a c t i o n s .  

S i n c e  t h e  t r a n s p o r t  c o e f f i c i e n t s  are o b t a i n e d  by i n t e g r a t i n g  

t h e  a u t o c o r r e l a t i o n  f u n c t i o n  o v e r  a l l  times, t h e  p r e s e n c e  o f  

long-t ime t a i l s  can  i n f l u e n c e  t h e  magnitude o f  these  c o e f f i c i e n t s  
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enormously.  Some of  t h e s e  n u m e r i c a l  d e t a i l s  w i l l  be p u b l i s h e d  

e l s e w h e r e .  30 

V I .  NATURE OF SPIN CLUSTERS 

@ u r  work is premised on t h e  f o l l o w i n g  two b a s i c  a s sumpt ions :  

( 1 )  For low t e m p e r a t u r e ,  t h e  f u n c t i o n a l  u n i t s  are Fermi or Bose 

c l u s t e r s  (hence  r e f e r r e d  to  as s p i n  c l u s t e r s  c o l l e c t i v e l y ) .  

N u c l e a t i o n  and g rowth  o f  s p i n  c l u s t e r s  are de te rmined  p r i n c i p a l l y  

by s p i n  s t a t i s t i c s  and s h o r t - r a n g e  forces. ( 2 )  Given t h e  s p i n  

c l u s t e r s ,  t h e i r  numbers and m u l t i p l i c a t i o n  are de te rmined  p r i n -  

c i p a l l y  by t e m p e r a t u r e  and long- range  forces.  The a p p l i c a b i l i t y  

of o u r  work t o  hydrogen metal s y s t e m s  rests on t h e  v a l i d i t y  of 

t h e s e  a s sumpt ions .  We s h a l l  see whe the r  t h e s e  a s s u m p t i o n s  and 

t h e i r  i m p l i c a t i o n s  are p h y s i c a l l y  r e a s o n a b l e .  We s h a l l  a lso 

see whether  t h e r e  are some p h y s i c a l  e v i d e n c e  f o r  them. 

Low-temperature measurements o f  t h e  d i f f u s i o n  of t h e  hydrogen 

i s o t o p e s  p and d i n  Pd show r e v e r s e d  i s o t o p e  b e h a v i o r .  It was 

o u r  c o n c l u s i o n  t h a t  t r a n s p o r t  b e h a v i o r  can  a p p e a r  anomalous because  

t h e  f u n c t i o n a l  u n i t s  are  c l u s t e r s  and  n o t  s i n g l e  p a r t i c l e s .  

Fu r the rmore ,  t h e  d e u t e r o n  c l u s t e r s  are "hard and small" c o n t a i n i n g  

few d e u t e r o n s ,  whereas  t h e  p r o t o n  c l u s t e r s  are  l lsoft  and large" 

c o n t a i n i n g  many p r o t o n s .  T h i s  c o n c l u s i o n  may be compared w i t h  

t h e  b e h a v i o r  of s p i n  c l u s t e r s  found i n  atoms and n u c l e i .  

Atomic s p i n  c l u s t e r s  are found i n  l i q u i d s  3He and 4He a t  

ve ry  low t e m p e r a t u r e s .  The e l e c t r o n  wave f u n c t i o n s  for 3He and 

'He are  a l m o s t  i d e n t i c a l .  31 The pronounced d i f f e r e n c e  i n  t h e  

low- tempera tu re  b e h a v i o r  between t h e  two l i q u i d s  i s  g e n e r a l l y  

a t t r i b u t e d  t o  t h e  d i f f e r e n c e  i n  s p i n  s ta t is t ics  obeyed by 3He 

and 'He. When mixed, t h e  two l i q u i d s  show some v e r y  r emarkab le  

m i s c i b i l i t y  p r o p e r t i e s  such  as phase  s e p a r a t i o n  and t r i c r i t i c a l  

po in t .32  I n s i d e  t h e  m i s c i b i l i t y  g a p ,  one f i n d s  m e t a s t a b l e  and 

s p i n o d a l  r e g i o n s . 3 3  I n  t h e s e  r e g i o n s  t h e r e  are indeed  two t y p e s  

of c l u s t e r s ,  one m e t a s t a b i l i z e d  by Fermi p a r t i c l e s  3He and t h e  

o t h e r  by Bose p a r t i c l e s  4He. Hence t h e y  are  s p i n  c l u s t e r s .  

The n u c l e a t i o n  and g rowth  rates o f  t h e s e  s p i n  c l u s t e r s  are found 
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t o  be v e r y  d i f f e r e n t .  H o f f e r  e t  a134 found t h a t  when t h e  mix- 

t u r e s  are quenched,  3He-rich c l u s t e r s  show g rowth ,  whereas  ‘He- 

r i c h  c l u s t e r s  do  n o t  a p p e a r  t o  grow. The b e h a v i o r  of t h e s e  atomic 

s p i n  c l u s t e r s  seem t o  be c o n s i s t e n t  w i t h  o u r  f irst  as sumpt ion  

and its i m p l i c a t i o n s .  

It is g e n e r a l l y  h e l d  t h a t  t h e  n u c l e i  are  made up o f  c e r t a i n  
35 d i s c r e t e  f u n c t i o n a l  u n i t s  r e s u l t i n g  i n  some d e f i n i t e  s t r u c t u r e .  

C l u s t e r s  and s p i n  s ta t is t ics  p l a y  an  i m p o r t a n t  r o l e  i n  u n d e r s t a n d -  

ing t h e  f o r m a t i o n  and s t a b i l i t y  of n u c l e a r  matter. Nuc lea r  

c l u s t e r s  most f r e q u e n t l y  d i s c u s s e d  are Bose c l u s t e r s  of t h e  a -  

p a r t i c l e  model and Fermi c l u s t e r s  of t h e  i n d e p e n d e n t - p a i r  model.  

Hence t h e s e  n u c l e a r  c l u s t e r s  are a l so  s p i n  c l u s t e r s .  The a -  
12 p a r t i c l e  model can a c c o u n t  f o r  c e r t a i n  l i g h t  n u c l i d e s  e.g. C 

and 0l6, The i n d e p e n d e n t - p a i r  model, 

however,  can  d e s c r i b e  much of t h e  p h y s i c s  of n u c l e a r  matter v e r y  

a d e q u a t e l y .  T h a t  is, h e a v i e r  n u c l i d e s  are not composed of Bose 

c l u s t e r s ,  b u t  composed of Fermi c l u s t e r s .  A p p a r e n t l y  even t h e  

n u c l e a r  Bose c l u s t e r s  do n o t  e n j o y  growth and t h e y  do  n o t  t h e r e -  

fore c o n t r i b u t e  much t o  b u i l d i n g  of h e a v i e r  n u c l e i .  The b e h a v i o r  

of n u c l e a r  s p i n  c l u s t e r s  t o  be c o n s i s t e n t  w i t h  o u r  f i rs t  

as sumpt ion .  

b u t  n o t  h e a v i e r  ones .  36 

The d i f f e r e n t  c l u s t e r i n g  b e h a v i o r  between Fermi a n d  Bose 

p a r t i c l e s  is n o t  u n r e a s o n a b l e .  Because of t h e  P a u l i  e x c l u s i o n  

p r i n c i p l e ,  t h e  Fermi p a r t i c l e s  are p r e v e n t e d  from close a p p r o a c h ,  

b u t  t h e  Bose p a r t i c l e s  are n o t .  A s  a r e s u l t ,  a small number 

of Bose p a r t i c l e s  may r e a d i l y  form a d r o p l e t - l i k e  s t r u c t u r e  and 

q u i c k l y  s a t u r a t e  e.g. t h e  a - p a r t i c l e .  Owing t o  t h e  e x c l u s i o n  

Fermi p a r t i c l e s  e n j o y  greater c o r r e l a t i o n  and f i n d  more d i f f i c u l t  

t o  s a t u r a t e .  Hence Fermi c l u s t e r s  i n v o l v e  larger numbers and 

t h e y  are more e las t ic .  Tha t  is,  t h e  Fermi c l u s t e r s  are g e n e r a l l y  

bigger and have greater degrees o f  freedom t h a n  t h e  Bose c l u s t e r s .  

Now t u r n i n g  t o  t h e  second a s s u m p t i o n ,  we n o t e  t h a t  it does 

n o t  i n v o l v e  s p i n  s ta t i s t ics .  It r e a l l y  need n o t  be an  a s sumpt ion .  

It c o u l d  be proved w i t h i n  t h e  framework of o u r  mean- f i e ld  model. 

I n  o u r  work w e  have  s i m p l y  t a k e n  it as an a s sumpt ion  as i t  a p p e a r s  
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t o  be well j u s t i f i e d  by t h e  b e h a v i o r  o f  o r d i n a r y  c l u s t e r s .  The 

BCS t h e o r y  of  s u p e r c o n d u c t i v i t y ,  f o r  example,  assumes t h a t  Cooper 

p a i r s  m u l t i p l y  as t h e  t e m p e r a t u r e  i s  lowered below t h e  supe rcon-  

d u c t i n g  t r a n s i t i o n  t e m p e r a t u r e .  37 The modern t h e o r y  o f  l i q u i d  

4He assumes t h a t  below t h e  lambda t e m p e r a t u r e ,  a f r a c t i o n  of  

t h e  l i q u i d  i s  i n  t h e  s u p e r f l u i d  s t a t e  whose d e n s i t y  i n c r e a s e s  

w i t h  l o w e r i n g  o f  t h e  t e m p e r a t u r e .  38 The p o p u l a t i o n  growth ra tes  

o f  t h e s e  q u a s i p a r t i c l e s  are d i f f i c u l t  t o  c a l c u l a t e  from f i r s t  

p r i n c i p l e s .  (Hence t h e y  have n e v e r  been e x a c t l y  c a l c u l a t e d . )  

For  o u r  model t h i s  c a l c u l a t i o n  a p p e a r s  f e a s i b l e  because  t h e  mean- 

f i e l d  approx ima t ion  is a p p l i c a b l e  a b  i n i t i o .  

Our c a l c u l a t i o n  of t h e  c l u s t e r  d e n s i t y  as a f u n c t i o n  o f  

t h e  t e m p e r a t u r e  i s  based on t h e  f o l l o w i n g  i d e a :  Below t h e  t r a n -  

s i t i o n  t e m p e r a t u r e  T c ,  s p i n  c l u s t e r s  are assumed t o  be randomly 

d i s t r i b u t e d  i n  a sea of s i n g l e  p a r t i c l e s .  The t o t a l  number- 

d e n s i t y  p ,  which is a c o n s t a n t ,  is a sum 

= pc1 + psp 

w h e r e  pC1 is  t h e  c l u s t e r  d e n s i t y  and p t h e  s i n g l e - p a r t i c l e  

d e n s i t y .  A s  T - 3 ,  more and more c l u s t e r s  a p p e a r  r e d u c i n g  t h e  

s i n g l e - p a r t i c l e  p o p u l a t i o n .  The g round  s t a t e  c o n t a i n s  c l u s t e r s  

o n l y .  As T-Tc,  more and more c l u s t e r s  b reak  down, i n c r e a s i n g  

t h e  p o p u l a t i o n  o f  s i n g l e  p a r t i c l e s .  Above Tc t h e r e  are no s p i n  

c l u s t e r s .  T h i s  p i c t u r e  i s  ve ry  s imilar  t o  t h e  t w o - f l u i d  concep t  

of  l i q u i d  ‘He due t o  T i s ~ a , ~ ~  a c c o r d i n g  t o  which t h e  he l ium l i q u i d  

below t h e  lambda t e m p e r a t u r e  T A  i s  composed of 2 components ,  

s u p e r f l u i d  and normal f l u i d .  The two f l u i d s  i n t e r p e n e t r a t e ,  

one s e r v i n g  as t h e  r e s e r v o i r  for  t h e  o t h e r .  The s u p e r f l u i d  h a s  

no e n t r o p y .  A t  T = 0 ,  t h e  l i q u i d  c o n t a i n s  o n l y  t h e  s u p e r f l u i d  

component and above T A X ’  o n l y  t h e  normal  f l u i d  component. The 

s u p e r f l u i d  d e n s i t y  p j u s t  below t h e  T A  h a s  been c a l c u l a t e d  by 

3 P  

a s c a l i n g  a rgumen t ,  3 g S  
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Using t h i s  i d e a  we o b t a i n  t h e  c l u s t e r  d e n s i t y  n e a r  Tc 

= o  T > Tc ( 1 8 )  

The c l u s t e r  d e n s i t y  has  a n  exponen t  1 because  o u r  model is a 

mean-f ie ld  system. Our c a l c u l a t i o n  a p p e a r s  t o  be e x t e n d a b l e  

t o  T = 0 by a method due  t o  Dekeyser  and Lee. 27 T h i s  work is 

i n  p r o g r e s s .  
F i n a l l y  t h e  a n a l o g y  between l i q u i d  ‘He and o u r  model i s  

s t r e n g t h e n e d  by the  f o l l o w i n g  fact: The lambda t r a n s i t i o n  i n  

l i q u i d  ‘He is second order.  The t r a n s i t i o n  t e m p e r a t u r e  TA shows 

a v e r y  weak dependence on  p r e s s u r e  P ,  s o  t h a t  it can  be e f f e c t i v e l y  

r e p r e s e n t e d  as 38 

T A ( P )  = T A  for P < Po 

where T A  2.2 k Po 25 atm. 

For  P > Po, t h e  t r a n s i t i o n  is first o r d e r  and t h e  t r a n s i t i o n  

t e m p e r a t u r e  becomes n o t i c e a b l y  p re s su re -dependen t .  T h i s  b e h a v i o r  
of TA is s t r i k i n g l y  similar t o  t h e  b e h a v i o r  of t h e  t r a n s i t i o n  

t e m p e r a t u r e  T of o u r  model [see sec. 111. 
C 

Tc (Q)  = Tc for Q < Qo 

= Tc(Q/Qo) 5 Q Q,. (20)  

For Q < Q t h e  t r a n s i t i o n  is second o r d e r ;  f o r  Q ,> Qo i t  is  

f i rs t  o r d e r .  The main d i f f e r e n c e  between t h e  two s y s t e m s  is 

i n  t h e  n a t u r e  of second order. Our model has  mean-f ie ld  c r i t i ca l  

e x p o n e n t s ,  whereas  l i q u i d  ‘He h a s  non-mean-field c r i t i ca l  

exponen t s .  We o b s e r v e  t h a t  t h e  co r re spondence  between t h e  two 
s y s t e m s  is made by t h e  p r e s s u r e  P and t h e  b i q u a d r a t i c  i n t e r a c t i o n  

0. 
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